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ABSTRACT 

The objective of this paper is to seed innovation in the layout of floor and roof diaphragms in steel buildings. To develop new 

layouts the optimization of the material distribution has been formulated within an objective function that maximizes the 

stiffness of the in-plane diaphragm response given a particular volume fraction of material – a classical objective for topology 

optimization in solid mechanics. A key initial challenge, that is the focus of the work herein, is integrating within the 

optimization formulation the fact that steel deck has highly orthotropic response: in-plane stiffness is different parallel and 

perpendicular to the deck profile, and in-plane shear stiffness is lower than the equivalent plate. As a result, the classical 2D 

topology optimization formulation is expanded to include orthotropic properties and material orientation as design variables. 

Verification of the formulation is accomplished by examining the in-plane response of a point loaded cantilever. The algorithm 

is able to successfully maintain response (stiffness) similar (within a few percent) to the isotropic case even when the orthotropic 

properties are far weaker by optimizing material orientation and placement. Application of the topology optimization algorithm 

is performed on a large scale diaphragm that has dimensions and constraints consistent with a large steel building under separate 

study. Significant future challenges remain and are briefly enumerated. This work is part of a larger initiative (steeli.org) that 

aims to better understand and optimize the role of diaphragms in the seismic response of steel buildings. 
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INTRODUCTION 

The seismic resistance of buildings relies on both the vertical and horizontal lateral force resisting systems (LFRS). While 

much attention has been paid to the design and optimization of the vertical LFRS, comparably little attention has been paid to 

the horizontal LFRS, or diaphragm. In typical buildings significant mass exists at the floor levels and the diaphragm is 

responsible for distributing these inertial effects to the vertical LFRS. The multitude of roles the diaphragm may play in 

successful seismic building performance is summarized in [1]. Today, our understanding and needs for building diaphragms 

are changing: new design methods and research suggest diaphragms may regularly experience inelastic seismic demands and 

diaphragm force levels may need to be increased; unique building floor plates require diaphragms with complex shapes and 

cutouts; new modular buildings require diaphragms with concentrated connection points; and ever increasing demands for 

efficiency, sustainability, and resilience all lead to a desire to potentially rethink and innovate these systems. 

Steel deck diaphragms are a common floor and roof diaphragm typology, and are the motivation for the work here. Examples 

of bare steel deck and steel deck with concrete fill, as would be common in building roofs and floors respectively, are provided 

in Figure 1. Within the context of a larger study on steel deck diaphragms [2] a number of 3D steel-framed building archetypes 

have been designed [3], an example of which is shown in Figure 2. This example employs buckling restrained braces (BRBs) 

for the vertical LFRS while bare steel deck diaphragms were designed for the roof and composite steel deck with concrete fill 

diaphragms for the floors. These archetypes provide baseline geometric and material properties for a typical design scenario. 

Topology Optimization is a general field that aims to provide optimized layouts of material for a given objective: maximum 

stiffness, least cost, highest thermal conductivity, etc. [4]. Floor and roof diaphragms are actually dual purpose as they must 

carry and distribute dead and live load in addition to their diaphragm obligations to provide in-plane shear strength and 

distribution of lateral forces to the vertical LFRS. Thus in reality, optimized diaphragm topologies are constrained by the need 

to carry gravity loads and even provide a lower bound stiffness to these transverse loads. Further, seismic performance 

objectives are realized in the context of dynamic not linear static response and energy dissipation is of interest, therefore 

investigating the true objective is fully enabled in nonlinear dynamic response. Despite these realities, successful diaphragm 

designs today use linear static analysis and simplifying assumptions about the load distribution to develop workable solutions. 
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To provide initial insights on potential innovations we are exploring the application of topology optimization for steel deck 

diaphragms employing the simple linear static models used in diaphragm design today. However, noting the large difference 

in deck properties parallel and perpendicular to the corrugations we are interested in allowing the optimization to (a) be 

orthotropic in nature and (b) allow the optimization to suggest orientation direction for the deck. Developing these two advances 

is the focus of this work.  

 

  
Figure 1. Steel deck diaphragms (a) roof - bare deck on 

open web steel joists [5], (b) floor - concrete filled deck [6]  

Figure 2. Isometric elevation of SDII building archetype 

with BRB braced frames [3] 

TOPOLOGY OPTIMIZATION FORMULATION 

The selected objective here is to design bare steel deck diaphragms with maximum stiffness, this is equivalent to the minimum 

compliance formulation [4] for a 2D continuum problem, using rectangular four node plane stress elements. Minimizing the 

external work done by the applied loads with an upper bound of available material is expressed as follow: 

 

𝑚𝑖𝑛
𝜌 𝜃

𝑓 = 𝐅𝑇 𝐝 

𝑠. 𝑡.     𝐊 𝐝 − 𝐅 = 𝟎 

∑ 𝜌𝑒 𝑣𝑒

𝑒∈𝛺

− 𝑉 ≤ 0 

𝜌𝑚𝑖𝑛 ≤ 𝜌𝑒 ≤  1    ∀ 𝑒 ∈ 𝛺  

−
𝜋

2
≤ 𝜃𝑒 ≤

𝜋

2
      ∀ 𝑒 ∈ 𝛺 

(1) 

where design variable ρe and θe are the material concentration (volume fraction) and the material orientation in element e. F is 

the applied load vector, d denotes the nodal displacements, ve denotes the element volume, the available volume of material in 

the design domain is denoted V. Finally, the global stiffness matrix K is assembled from element stiffness matrices Ke: 

 
𝐊 =    A    𝐊𝑒(𝜌𝑒 , 𝜃𝑒) 
          𝑒∈𝛺 

(2) 

where the element stiffness matrix Ke is defined for each element as: 

 𝐊𝑒(𝜌𝑒  , 𝜃𝑒) = 𝜌𝑒  ∫ 𝐁𝑒𝑇𝐃𝑒(𝜃𝑒) 𝐁𝑒

Ωe
 𝑑Ωe (3) 

in which the strain-displacement matrix is denoted Be, Ωe is the element volume domain, and De denotes the element constitutive 

stiffness matrix, rotated by angle θe: 

 𝐃𝑒(𝜃𝑒) =  𝐑(𝜃𝑒)−1  𝐃0
𝑒  𝐑(𝜃𝑒)−𝑇 (4) 

The orthotropic material properties at angle θe=0 are defined with the constitutive stiffness matrix: 

 𝐃𝜃=0
𝑒 =

1

1 − 𝜈12𝜈21

[

𝐸1 𝜈12𝐸2 0
𝜈21𝐸1 𝐸2 0

0 0 𝐺 (1 − 𝜈12𝑣21)
] (5) 

Where Eα is the Young’s modulus for direction 1 and 2, 𝜈𝛼 is the Poisson’s ratio and the shear stiffness is denoted as G.  

The rotation matrix R in Eq. (4) is defined as [7]: 
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 𝐑(𝜃𝑒) = [

cos(𝜃𝑒)2 sin(𝜃𝑒)2 2 cos(𝜃𝑒) sin(𝜃𝑒)

cos(𝜃𝑒)2 cos(𝜃𝑒)2 −2 cos(𝜃𝑒) sin(𝜃𝑒)

− cos(𝜃𝑒) sin(𝜃𝑒) cos(𝜃𝑒) sin(𝜃𝑒) cos(𝜃𝑒)2 − sin(𝜃𝑒)2

] (6) 

s 

Sensitivities  

The problems in this paper are solved with the gradient based optimizer Method for Moving Asymptotes (MMA) [8]. Therefore 

the gradients of the objective function f and the constraints computed with respect to the independent design variables ρ and θ. 

For the minimum compliance problems, the adjoint method [9] is used to calculate the sensitivities of the objective function, 

to eliminate the derivatives of the displacements: 

 
𝜕𝑓

𝜕𝜌𝑖
= −𝐝𝑒𝑇  

𝜕𝐊𝑒  

𝜕𝜌𝑖
(𝜌𝑒  , 𝜃𝑒) 𝐝𝑒 (7) 

 
𝜕𝑓

𝜕𝜃𝑖
= −𝐝𝑒𝑇  

𝜕𝐊𝑒

𝜕𝜃𝑖
(𝜌𝑒  , 𝜃𝑒) 𝐝𝑒 (8) 

Where the element stiffness derivatives with respect to the material density 𝜌 and material orientation 𝜃 are: 

 
𝜕𝐊𝑒

𝜕𝜌𝑖
(𝜌𝑒 , 𝜃𝑒) =

𝜕𝜌𝑒

𝜕𝜌𝑖
∫ 𝐁𝑒𝑇𝐃𝑒(𝜃𝑒) 𝐁𝑒

Ωe
 𝑑Ωe   (9) 

 
𝜕𝐊𝑒

𝜕𝜃𝑖
(𝜌𝑒  , 𝜃𝑒) = 𝜌𝑒  ∫ 𝐁𝑒𝑇 𝜕𝐃𝑒

𝜕𝜃𝑖
(𝜃𝑒) 𝐁𝑒

Ωe
 𝑑Ωe (10) 

The derivative of the constitutive stiffness matrix is: 

 
𝜕𝐃𝑒

𝜕𝜃𝑖
(𝜃𝑒) =

𝜕𝐑 (𝜃𝑒) −𝟏

𝜕𝜃𝑖
 𝐃0

𝑒   𝐑(𝜃𝑒)−𝑇 + 𝐑(𝜃𝑒)−1  𝐃0
𝑒   

𝜕𝐑 (𝜃𝑒)−𝑇

𝜕𝜃𝑖
 (11) 

 
Material Assumptions/ Diaphragm Stiffness Properties 

To ground our analysis to the practical realities of steel deck diaphragms it is important to establish the range of stiffness that 

is available – i.e. establish the size of the current design space. Bare steel deck diaphragms are particularly interesting since 

they have a substantial stiffness difference parallel and perpendicular to the corrugation direction. For the purposes of the 

optimization conducted herein steel deck is transformed into an equivalent orthotropic plate – and thus the range of E1’, E2’, 

and G’ are of primary interest here, where prime signifies the stiffness times plate thickness. The range of stiffness properties 

for bare steel deck are found with the help of design tables from [10], and [11] which provides a method for calculating the 

Young’s moduli of a corrugated plate. The tables in [10] are extensive and include different deck type; fastener spacing, patterns 

and types; span lengths; and both bare and filled deck. Considering only the bare steel deck, more than 75,000 layouts are 

available for the designer with a wide distribution of shear stiffness realized as provided in Figure 3. Bounds on the equivalent 

material properties are listed in Table 1 along with ratios of the elastic modulus and the shear modulus. 

 

 
Figure 3. Shear stiffness for bare steel diaphragms 

Table 1. Extreme values for the diaphragm Young’s 

moduli and shear stiffness 

  𝐦𝐢𝐧   𝐦𝐚𝐱   
E1'   

 

[kip/in]  

(kN/m) 

694.6 

(121643) 

2884.9 

(505223) 

E2'   

 

[kip/in]  

(kN/m) 

0.0264 

(4.623) 

0.8947 

(156.69) 

G'     

 

[kip/in]  

(kN/m) 

 5.4 

(945.68) 

1017.8 

(178244) 

𝜶 = 𝐸2′ 𝐸1′⁄  300 ⋅ 10−6 1 ⋅ 10−3 

𝜷 = 𝐺′ (𝐸1′ (2(1 + 𝜈))⁄ )⁄  0.005 1 
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CANTILEVER BEAM EXAMPLE 

A classic example in topology optimization is the cantilever beam with tip load [12], as illustrated in Figure 4. This problem is 

used to verify our implementation of Eq. (1) and explore the impact of material non-dimensional ratios α and β, which define 

the level of orthotropicity in the solution. 

The cantilever beam in this study has dimensions of L=150 ft (45.72 m), h=100 ft (30.48 m) with a tip load of F=1 kip (4.45 

kN). The material properties are defined as: 

 
𝐸2 = 𝛼 𝐸1 
𝐺 = 𝛽 𝐺0 

(12) 

where α<1 and β<1 are ratios of the reduction in stiffness from the isotropic material and 𝐺0 = 𝐸1/(2(1 + 𝜈21)), and E1 

denotes the Young’s modulus in the strong direction of the material. For the initial example the cantilever beam has the stiffness 

properties: E1=1, 𝜈21=0.3 and 𝜈12 = 𝜈21E1/E2=𝜈21/α. 

 
Figure 4. Design domain of cantilever beam example (dimensions selected as ½ the floor plate of Figure 2) 

s 

Verification of Code 

The problem formulation for the isotropic material case is verified against the “99-line code” [13], optimized solution provided 

in Figure 5a. Figure 5b illustrates the optimized design produced here using the MMA driver and the formulation of Eq. (1). 

The mesh is 150x100 plane stress elements and the volume fraction is set to 50%. The optimized objective function evaluation 

is provided in Figure 5 and the difference is 0.28%. The difference may be attributed to solver choice and tolerance levels and 

is deemed acceptable. 

a)  

f=29.31 kip⋅ft (39.74 kN⋅m) 

b)  

f=29.40 kip⋅ft (39.86 kN⋅m) 

Figure 5. Optimized structures for isotropic cantilever beam with (a) 99 -line code [13] and (b) MMA and problem 

formulation of Eq. (1) 
s 

Optimized Design for Fixed Angles 

In the following we explore the impact of two changes consistent with steel deck diaphragms: (1) variation in α, i.e. reduced 

E2 compared to E1, and (2) variation in β, i.e. reduced G compared with its isotropic equivalent. In addition, we also consider 

the unique impact of overall orientation, θ, on the solution. For these solutions a 60x40 mesh of plane stress elements, and a 

volume fraction of V=50% are maintained. The initial starting condition is an even material density of ρ=0.5. For each case 

considered we may compare the change in the objective function (ratio of tip displacement) after optimization with that arrived 
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at from the isotropic case as provided in Figure 6. In addition, the final optimized topologies are provided for selected cases in 

Figure 7-9.  

The impact of α and θ is provided in Figure 6a. Having 𝐸1 perpendicular to the loading (𝜃) always provides the stiffest solution 

for the cantilever problem regardless of α (i.e. reduced 𝐸2). Interestingly, for the θ=0° case the optimized displacement 

converges to a constant value as E2 reduces. The explanation for this behavior may be found in Figure 7c which demonstrates 

that the optimized design of a cantilever beam with almost no stiffness in the vertical direction is a solid beam that uses the 

upper and lower fibers in tension and compression to withstand the vertical load at the tip. The weakest solutions (Figure 6a) 

occur when the strong (E1) direction is vertical (θ=90°). Figure 8 provides the optimized designs, which are dominated by the 

shear strength of the material. 

a)  b)  

Figure 6. Change in overall diaphragm stiffness as (a) the stiffness ratio increases and (b) shear stiffness increases 
s 

a)  

f=36.84 kip⋅ft (49.92 kN⋅m) 

b)  

f=221.45 kip⋅ft (300.25 kN⋅m) 

c)  
f=1539.02 kip⋅ft (2086.63 kN⋅m) 

Figure 7. Optimized design for the cantilever beam example for fixed angle θ=0°, β=1, and decreasing Young’s modulus by 

a factor of (a) α=0.1, (b) α=10-3, and (c) α=10-6. 

a)  

f=171.96 kip⋅ft (233.15 kN⋅m) 

b)  

f=1478.44 kip⋅ft (2004.49 kN⋅m) 

c)  

f=81155.77 kip⋅ft (110032.40 kN⋅m) 

Figure 8. Optimized design for the cantilever beam example for fixed angle θ=90°, β=1, and decreasing Young’s modulus 

by a factor of (a) α=0.1, (b) α=10-2, and (c) α=5⋅10-5. 

s 

The impact of β (reduced shear stiffness) and θ is provided in Figure 6b, since E1=E2 (α=1) the impact of material orientation 

should be negligible. The small differences between the different orientations is believed to be caused by numerical 

sensitivity when β becomes less than ~0.1. Selected optimized topologies are provided in Figures 9.  
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a)  

f=38.45 kip⋅ft (52.13 kN⋅m) 

b)  

𝑓=184.51 kip⋅ft (250.16 kN⋅m) 

c)  

𝑓=1591.87 kip⋅ft (2158.28 kN⋅m) 

Figure 9. Optimized design for the cantilever beam example for fixed angle θ=0°, α=1, and decreasing shear modulus by 

a factor of (a) β=0.5, (b) β=0.05, and (c) β=0.005. 

 

Optimized Design with Design Variable 𝝆 and 𝜽 

The formulation presented in Eq. (1)-(11) uses two design variables per element: ρe and θe. In Figure 10 and 11 we have 

provided the fully optimized topologies for different levels of α and β. For each element material orientation, θe, is depicted as 

a short red line in the E1 direction, and element density, ρe, by grayscale with black ρe=1. Results as E2 decreases in relation to 

E1 (varied α) provided in Figure 10 indicate that the solution may maintain stiffness very near the isotropic case even with low 

α. With free material orientation, the cantilever beam can preserve its global stiffness when one of the material stiffnesses 

significantly reduces. Figure 11 provides similar results for the case when the shear stiffness is reduced (varied β). Notably, 

change in material orientation plays a stronger role in the solution of Figure 11, as the material orientation must provide the 

load path when the shear stiffness is lost.  We note in these solutions the presence of subtle checkerboard patterns or one-node 

chain features, which are known in topology optimization to appear when using low-order finite elements with isotropic 

material properties [14].  These can be circumvented using more sophisticated topological representations, such as to control 

the length scale of designed features [12-15]. 

a)  

f=30.65 kip⋅ft (41.56 kN⋅m) 

b)  

f=30.69 kip⋅ft (41.61 kN⋅m) 

c)  

f=30.20 kip⋅ft (40.95 kN⋅m) 

Figure 10. Optimized design for the cantilever beam example for starting angle θ=0°, β=1 and decreasing Young’s 

modulus by a factor of (a) α=0.1, (b) α=10-3, and (c) α=10-6. 

a)  

f=34.27 kip⋅ft (46.46 kN⋅m) 

b)  

f=49.12 kip⋅ft (66.60 kN⋅m) 

c)  

f=41.66 kip⋅ft (56.48 kN⋅m) 

Figure 11. Optimized design for the cantilever beam example for starting angle θ=0°, α=1  and decreasing shear modulus 

by a factor of (a) β=0.5, (b) β=0.05, and (c) β=0.005. 

DIAPHRAGM EXAMPLE 

To illustrate the potential of the developed and verified topology optimization algorithm consider a diaphragm motivated by 

[3] (Figure 2) as illustrated in Figure 12: The supports on the short sides are at the location of the BRB braced frames, loads 

are applied uniformly on each side to simulate a uniform inertial force acting on the floor, and is set to p=0.5 kip/ft (7.30 kN/m). 

The material properties are: E2'=10.73 kip/ft (156.59 kN/m), G'=12213 kip/ft (178.24 MN/m), and E1'=34618 kip/ft (505.22 

MN/m) and dimensions are L=150 ft (45.72 m), h=100 ft (30.48 m). The volume fraction is set to 50%. For the initial conditions 

an even material density distribution of ρe=0.5 and material orientation θ=0° are used. 
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The resulting optimized solution is provided in Figure 13 and has several notable features. First, consistent with intuition the 

chords (material on the long sides of the building) are prominent and oriented with the strong direction parallel to the long side. 

Second, the optimized topology does not use traditional collectors (material on the short side of the building) instead material 

is channeled to a large node that connects to the supports and employs an orientation largely parallel to the short side of the 

building. Between these large collector nodes and the chords the topology favors struts with an angled material orientation. 

Realizing such complex geometries in practice would be challenging in steel diaphragm systems – but the optimization points 

to the potential benefits of re-thinking the manner in which forces are brought to the chords and collectors and further 

refinements will be sought to bring greater practicality to the final solutions.  

 
Figure 12. Layout of diaphragm example inspired from the SDII archetype layout [3] 

 

 
f=9.24 kip⋅ft (12.53 kN⋅m) 

Figure 13. Optimized design of diaphragm example 

CONCLUSIONS 

Motivated by the directional nature of bare steel deck stiffness and an interest in exploring innovative and efficient diaphragm 

solutions we developed a two-dimensional topology optimization algorithm that is inclusive of orthotropic material properties 

and allows material orientation to be a design variable. We verified the algorithm on a classic cantilever problem, widely 

employed in topology optimization. It was found that decreasing one of the Young’s moduli or the shear stiffness while fixing 

the material orientation will significantly decrease the cantilever beam’s overall stiffness compared to the isotropic case. 

However, when the optimizer can decide the orientation of the material for each element, it was found that the beam can nearly 

maintain its isotropic stiffness even as one of the Young’s moduli or the shear stiffness reduces. A final example was provided 

for a large diaphragm in an example building where the optimization reveals new ideas about how to distribute in-plane stiffness 

for efficient distribution of inertial load from the floor to the braced frames. Significant future work remains: impact of new 

layouts, consideration of steel deck with concrete fill properties, integration of more practical constructability constraints, 

integration of gravity load constraints, incorporation of cost, etc. Despite the large degree of future work remaining, the paper 

introduces the potential of topology optimization to provide new insights for the design of building diaphragms. 
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